Metamath Proof Explorer


Theorem nsyli

Description: A negated syllogism inference. (Contributed by NM, 3-May-1994)

Ref Expression
Hypotheses nsyli.1 φψχ
nsyli.2 θ¬χ
Assertion nsyli φθ¬ψ

Proof

Step Hyp Ref Expression
1 nsyli.1 φψχ
2 nsyli.2 θ¬χ
3 1 con3d φ¬χ¬ψ
4 2 3 syl5 φθ¬ψ