Metamath Proof Explorer


Theorem con3d

Description: A contraposition deduction. Deduction form of con3 . (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis con3d.1 φψχ
Assertion con3d φ¬χ¬ψ

Proof

Step Hyp Ref Expression
1 con3d.1 φψχ
2 notnotr ¬¬ψψ
3 2 1 syl5 φ¬¬ψχ
4 3 con1d φ¬χ¬ψ