Metamath Proof Explorer


Theorem pm2.21ddALT

Description: Alternate proof of pm2.21dd . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses pm2.21ddALT.1 φ ψ
pm2.21ddALT.2 φ ¬ ψ
Assertion pm2.21ddALT φ χ

Proof

Step Hyp Ref Expression
1 pm2.21ddALT.1 φ ψ
2 pm2.21ddALT.2 φ ¬ ψ
3 2 pm2.21d φ ψ χ
4 1 3 mpd φ χ