Metamath Proof Explorer


Theorem nsyld

Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses nsyld.1 φψ¬χ
nsyld.2 φτχ
Assertion nsyld φψ¬τ

Proof

Step Hyp Ref Expression
1 nsyld.1 φψ¬χ
2 nsyld.2 φτχ
3 2 con3d φ¬χ¬τ
4 1 3 syld φψ¬τ