Metamath Proof Explorer


Theorem nsyld

Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses nsyld.1 ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
nsyld.2 ( 𝜑 → ( 𝜏𝜒 ) )
Assertion nsyld ( 𝜑 → ( 𝜓 → ¬ 𝜏 ) )

Proof

Step Hyp Ref Expression
1 nsyld.1 ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
2 nsyld.2 ( 𝜑 → ( 𝜏𝜒 ) )
3 2 con3d ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜏 ) )
4 1 3 syld ( 𝜑 → ( 𝜓 → ¬ 𝜏 ) )