Metamath Proof Explorer


Theorem pm2.61d1

Description: Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005)

Ref Expression
Hypotheses pm2.61d1.1 φ ψ χ
pm2.61d1.2 ¬ ψ χ
Assertion pm2.61d1 φ χ

Proof

Step Hyp Ref Expression
1 pm2.61d1.1 φ ψ χ
2 pm2.61d1.2 ¬ ψ χ
3 2 a1i φ ¬ ψ χ
4 1 3 pm2.61d φ χ