Metamath Proof Explorer


Theorem pm2.61d1

Description: Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005)

Ref Expression
Hypotheses pm2.61d1.1
|- ( ph -> ( ps -> ch ) )
pm2.61d1.2
|- ( -. ps -> ch )
Assertion pm2.61d1
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 pm2.61d1.1
 |-  ( ph -> ( ps -> ch ) )
2 pm2.61d1.2
 |-  ( -. ps -> ch )
3 2 a1i
 |-  ( ph -> ( -. ps -> ch ) )
4 1 3 pm2.61d
 |-  ( ph -> ch )