Description: Deduction eliminating an antecedent. (Contributed by NM, 27-Apr-1994) (Proof shortened by Wolf Lammen, 12-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2.61d.1 | |- ( ph -> ( ps -> ch ) ) |
|
pm2.61d.2 | |- ( ph -> ( -. ps -> ch ) ) |
||
Assertion | pm2.61d | |- ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | pm2.61d.2 | |- ( ph -> ( -. ps -> ch ) ) |
|
3 | 2 | con1d | |- ( ph -> ( -. ch -> ps ) ) |
4 | 3 1 | syld | |- ( ph -> ( -. ch -> ch ) ) |
5 | 4 | pm2.18d | |- ( ph -> ch ) |