Metamath Proof Explorer


Theorem pm2.61d

Description: Deduction eliminating an antecedent. (Contributed by NM, 27-Apr-1994) (Proof shortened by Wolf Lammen, 12-Sep-2013)

Ref Expression
Hypotheses pm2.61d.1
|- ( ph -> ( ps -> ch ) )
pm2.61d.2
|- ( ph -> ( -. ps -> ch ) )
Assertion pm2.61d
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 pm2.61d.1
 |-  ( ph -> ( ps -> ch ) )
2 pm2.61d.2
 |-  ( ph -> ( -. ps -> ch ) )
3 2 con1d
 |-  ( ph -> ( -. ch -> ps ) )
4 3 1 syld
 |-  ( ph -> ( -. ch -> ch ) )
5 4 pm2.18d
 |-  ( ph -> ch )