Metamath Proof Explorer


Theorem pm2.18d

Description: Deduction form of the Clavius law pm2.18 . (Contributed by FL, 12-Jul-2009) (Proof shortened by Andrew Salmon, 7-May-2011) Revised to shorten pm2.18 . (Revised by Wolf Lammen, 17-Nov-2023)

Ref Expression
Hypothesis pm2.18d.1
|- ( ph -> ( -. ps -> ps ) )
Assertion pm2.18d
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 pm2.18d.1
 |-  ( ph -> ( -. ps -> ps ) )
2 id
 |-  ( ph -> ph )
3 pm2.21
 |-  ( -. ps -> ( ps -> -. ph ) )
4 1 3 sylcom
 |-  ( ph -> ( -. ps -> -. ph ) )
5 2 4 mt4d
 |-  ( ph -> ps )