Metamath Proof Explorer


Theorem jad

Description: Deduction form of ja . (Contributed by Scott Fenton, 13-Dec-2010) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypotheses jad.1 φ¬ψθ
jad.2 φχθ
Assertion jad φψχθ

Proof

Step Hyp Ref Expression
1 jad.1 φ¬ψθ
2 jad.2 φχθ
3 1 com12 ¬ψφθ
4 2 com12 χφθ
5 3 4 ja ψχφθ
6 5 com12 φψχθ