Metamath Proof Explorer


Theorem jad

Description: Deduction form of ja . (Contributed by Scott Fenton, 13-Dec-2010) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypotheses jad.1
|- ( ph -> ( -. ps -> th ) )
jad.2
|- ( ph -> ( ch -> th ) )
Assertion jad
|- ( ph -> ( ( ps -> ch ) -> th ) )

Proof

Step Hyp Ref Expression
1 jad.1
 |-  ( ph -> ( -. ps -> th ) )
2 jad.2
 |-  ( ph -> ( ch -> th ) )
3 1 com12
 |-  ( -. ps -> ( ph -> th ) )
4 2 com12
 |-  ( ch -> ( ph -> th ) )
5 3 4 ja
 |-  ( ( ps -> ch ) -> ( ph -> th ) )
6 5 com12
 |-  ( ph -> ( ( ps -> ch ) -> th ) )