Description: Deduction form of ja . (Contributed by Scott Fenton, 13-Dec-2010) (Proof shortened by Andrew Salmon, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jad.1 | |- ( ph -> ( -. ps -> th ) ) |
|
jad.2 | |- ( ph -> ( ch -> th ) ) |
||
Assertion | jad | |- ( ph -> ( ( ps -> ch ) -> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jad.1 | |- ( ph -> ( -. ps -> th ) ) |
|
2 | jad.2 | |- ( ph -> ( ch -> th ) ) |
|
3 | 1 | com12 | |- ( -. ps -> ( ph -> th ) ) |
4 | 2 | com12 | |- ( ch -> ( ph -> th ) ) |
5 | 3 4 | ja | |- ( ( ps -> ch ) -> ( ph -> th ) ) |
6 | 5 | com12 | |- ( ph -> ( ( ps -> ch ) -> th ) ) |