Metamath Proof Explorer


Theorem mtod

Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 11-Sep-2013)

Ref Expression
Hypotheses mtod.1 φ ¬ χ
mtod.2 φ ψ χ
Assertion mtod φ ¬ ψ

Proof

Step Hyp Ref Expression
1 mtod.1 φ ¬ χ
2 mtod.2 φ ψ χ
3 1 a1d φ ψ ¬ χ
4 2 3 pm2.65d φ ¬ ψ