Metamath Proof Explorer


Theorem mtod

Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 11-Sep-2013)

Ref Expression
Hypotheses mtod.1
|- ( ph -> -. ch )
mtod.2
|- ( ph -> ( ps -> ch ) )
Assertion mtod
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 mtod.1
 |-  ( ph -> -. ch )
2 mtod.2
 |-  ( ph -> ( ps -> ch ) )
3 1 a1d
 |-  ( ph -> ( ps -> -. ch ) )
4 2 3 pm2.65d
 |-  ( ph -> -. ps )