Metamath Proof Explorer


Theorem mtod

Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 11-Sep-2013)

Ref Expression
Hypotheses mtod.1 ( 𝜑 → ¬ 𝜒 )
mtod.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mtod ( 𝜑 → ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 mtod.1 ( 𝜑 → ¬ 𝜒 )
2 mtod.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 a1d ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) )
4 2 3 pm2.65d ( 𝜑 → ¬ 𝜓 )