Metamath Proof Explorer


Theorem mtoi

Description: Modus tollens inference. (Contributed by NM, 5-Jul-1994) (Proof shortened by Wolf Lammen, 15-Sep-2012)

Ref Expression
Hypotheses mtoi.1 ¬ 𝜒
mtoi.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mtoi ( 𝜑 → ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 mtoi.1 ¬ 𝜒
2 mtoi.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 a1i ( 𝜑 → ¬ 𝜒 )
4 3 2 mtod ( 𝜑 → ¬ 𝜓 )