Metamath Proof Explorer


Theorem conax1

Description: Contrapositive of ax-1 . (Contributed by BJ, 28-Oct-2023)

Ref Expression
Assertion conax1 ¬φψ¬ψ

Proof

Step Hyp Ref Expression
1 ax-1 ψφψ
2 1 con3i ¬φψ¬ψ