Metamath Proof Explorer


Theorem nsyl

Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 2-Mar-2013)

Ref Expression
Hypotheses nsyl.1 φ¬ψ
nsyl.2 χψ
Assertion nsyl φ¬χ

Proof

Step Hyp Ref Expression
1 nsyl.1 φ¬ψ
2 nsyl.2 χψ
3 1 2 nsyl3 χ¬φ
4 3 con2i φ¬χ