Metamath Proof Explorer


Theorem imnan

Description: Express an implication in terms of a negated conjunction. (Contributed by NM, 9-Apr-1994)

Ref Expression
Assertion imnan φ ¬ ψ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 df-an φ ψ ¬ φ ¬ ψ
2 1 con2bii φ ¬ ψ ¬ φ ψ