Metamath Proof Explorer


Theorem con2bii

Description: A contraposition inference. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis con2bii.1 φ ¬ ψ
Assertion con2bii ψ ¬ φ

Proof

Step Hyp Ref Expression
1 con2bii.1 φ ¬ ψ
2 notnotb ψ ¬ ¬ ψ
3 2 1 xchbinxr ψ ¬ φ