Metamath Proof Explorer


Theorem nanass

Description: A characterization of when an expression involving alternative denials associates. Remark: alternative denial is commutative, see nancom . (Contributed by Richard Penner, 29-Feb-2020) (Proof shortened by Wolf Lammen, 23-Oct-2022)

Ref Expression
Assertion nanass φχφψχφψχ

Proof

Step Hyp Ref Expression
1 bicom1 φχχφ
2 nanbi2 φχψφψχ
3 1 2 nanbi12d φχχψφφψχ
4 nannan φψχφψχ
5 simpr ψχχ
6 5 imim2i φψχφχ
7 4 6 sylbi φψχφχ
8 nannan χψφχψφ
9 simpr ψφφ
10 9 imim2i χψφχφ
11 8 10 sylbi χψφχφ
12 7 11 impbid21d χψφφψχφχ
13 nanan φψχ¬φψχ
14 simpl φψχφ
15 13 14 sylbir ¬φψχφ
16 nanan χψφ¬χψφ
17 simpl χψφχ
18 16 17 sylbir ¬χψφχ
19 pm5.1im φχφχ
20 15 18 19 syl2imc ¬χψφ¬φψχφχ
21 12 20 bija χψφφψχφχ
22 3 21 impbii φχχψφφψχ
23 nancom ψφφψ
24 23 nanbi2i χψφχφψ
25 nancom χφψφψχ
26 24 25 bitri χψφφψχ
27 26 bibi1i χψφφψχφψχφψχ
28 22 27 bitri φχφψχφψχ