Description: A characterization of when an expression involving alternative denials associates. Remark: alternative denial is commutative, see nancom . (Contributed by Richard Penner, 29-Feb-2020) (Proof shortened by Wolf Lammen, 23-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nanass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 | |
|
2 | nanbi2 | |
|
3 | 1 2 | nanbi12d | |
4 | nannan | |
|
5 | simpr | |
|
6 | 5 | imim2i | |
7 | 4 6 | sylbi | |
8 | nannan | |
|
9 | simpr | |
|
10 | 9 | imim2i | |
11 | 8 10 | sylbi | |
12 | 7 11 | impbid21d | |
13 | nanan | |
|
14 | simpl | |
|
15 | 13 14 | sylbir | |
16 | nanan | |
|
17 | simpl | |
|
18 | 16 17 | sylbir | |
19 | pm5.1im | |
|
20 | 15 18 19 | syl2imc | |
21 | 12 20 | bija | |
22 | 3 21 | impbii | |
23 | nancom | |
|
24 | 23 | nanbi2i | |
25 | nancom | |
|
26 | 24 25 | bitri | |
27 | 26 | bibi1i | |
28 | 22 27 | bitri | |