Step |
Hyp |
Ref |
Expression |
1 |
|
bicom1 |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( 𝜒 ↔ 𝜑 ) ) |
2 |
|
nanbi2 |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( 𝜓 ⊼ 𝜑 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) ) |
3 |
1 2
|
nanbi12d |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
4 |
|
nannan |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) ) |
5 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜒 ) |
6 |
5
|
imim2i |
⊢ ( ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
7 |
4 6
|
sylbi |
⊢ ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 → 𝜒 ) ) |
8 |
|
nannan |
⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜒 → ( 𝜓 ∧ 𝜑 ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜑 ) |
10 |
9
|
imim2i |
⊢ ( ( 𝜒 → ( 𝜓 ∧ 𝜑 ) ) → ( 𝜒 → 𝜑 ) ) |
11 |
8 10
|
sylbi |
⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( 𝜒 → 𝜑 ) ) |
12 |
7 11
|
impbid21d |
⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) ) |
13 |
|
nanan |
⊢ ( ( 𝜑 ∧ ( 𝜓 ⊼ 𝜒 ) ) ↔ ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝜓 ⊼ 𝜒 ) ) → 𝜑 ) |
15 |
13 14
|
sylbir |
⊢ ( ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → 𝜑 ) |
16 |
|
nanan |
⊢ ( ( 𝜒 ∧ ( 𝜓 ⊼ 𝜑 ) ) ↔ ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ) |
17 |
|
simpl |
⊢ ( ( 𝜒 ∧ ( 𝜓 ⊼ 𝜑 ) ) → 𝜒 ) |
18 |
16 17
|
sylbir |
⊢ ( ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → 𝜒 ) |
19 |
|
pm5.1im |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜑 ↔ 𝜒 ) ) ) |
20 |
15 18 19
|
syl2imc |
⊢ ( ¬ ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) → ( ¬ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) ) |
21 |
12 20
|
bija |
⊢ ( ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) → ( 𝜑 ↔ 𝜒 ) ) |
22 |
3 21
|
impbii |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
23 |
|
nancom |
⊢ ( ( 𝜓 ⊼ 𝜑 ) ↔ ( 𝜑 ⊼ 𝜓 ) ) |
24 |
23
|
nanbi2i |
⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜒 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ) |
25 |
|
nancom |
⊢ ( ( 𝜒 ⊼ ( 𝜑 ⊼ 𝜓 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ) |
26 |
24 25
|
bitri |
⊢ ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ) |
27 |
26
|
bibi1i |
⊢ ( ( ( 𝜒 ⊼ ( 𝜓 ⊼ 𝜑 ) ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
28 |
22 27
|
bitri |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊼ 𝜓 ) ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |