Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011) (Proof shortened by SF, 2-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nanbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜒 ⊼ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ⊼ 𝜒 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) ) | |
| 2 | nancom | ⊢ ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜑 ⊼ 𝜒 ) ) | |
| 3 | nancom | ⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ( 𝜓 ⊼ 𝜒 ) ) | |
| 4 | 1 2 3 | 3bitr4g | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ⊼ 𝜑 ) ↔ ( 𝜒 ⊼ 𝜓 ) ) ) |