Metamath Proof Explorer


Theorem bicom1

Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)

Ref Expression
Assertion bicom1 φψψφ

Proof

Step Hyp Ref Expression
1 biimpr φψψφ
2 biimp φψφψ
3 1 2 impbid φψψφ