Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | bicom1 | |- ( ( ph <-> ps ) -> ( ps <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
3 | 1 2 | impbid | |- ( ( ph <-> ps ) -> ( ps <-> ph ) ) |