Metamath Proof Explorer


Theorem bicom1

Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012)

Ref Expression
Assertion bicom1
|- ( ( ph <-> ps ) -> ( ps <-> ph ) )

Proof

Step Hyp Ref Expression
1 biimpr
 |-  ( ( ph <-> ps ) -> ( ps -> ph ) )
2 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
3 1 2 impbid
 |-  ( ( ph <-> ps ) -> ( ps <-> ph ) )