Metamath Proof Explorer


Theorem an3andi

Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)

Ref Expression
Assertion an3andi φψχθφψφχφθ

Proof

Step Hyp Ref Expression
1 df-3an ψχθψχθ
2 1 anbi2i φψχθφψχθ
3 anandi φψχθφψχφθ
4 anandi φψχφψφχ
5 4 anbi1i φψχφθφψφχφθ
6 2 3 5 3bitri φψχθφψφχφθ
7 df-3an φψφχφθφψφχφθ
8 6 7 bitr4i φψχθφψφχφθ