Metamath Proof Explorer


Theorem bitr4i

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses bitr4i.1 φ ψ
bitr4i.2 χ ψ
Assertion bitr4i φ χ

Proof

Step Hyp Ref Expression
1 bitr4i.1 φ ψ
2 bitr4i.2 χ ψ
3 2 bicomi ψ χ
4 1 3 bitri φ χ