Metamath Proof Explorer


Theorem bitrd

Description: Deduction form of bitri . (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 14-Apr-2013)

Ref Expression
Hypotheses bitrd.1 φψχ
bitrd.2 φχθ
Assertion bitrd φψθ

Proof

Step Hyp Ref Expression
1 bitrd.1 φψχ
2 bitrd.2 φχθ
3 1 pm5.74i φψφχ
4 2 pm5.74i φχφθ
5 3 4 bitri φψφθ
6 5 pm5.74ri φψθ