Metamath Proof Explorer


Theorem bitr2d

Description: Deduction form of bitr2i . (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses bitr2d.1 φ ψ χ
bitr2d.2 φ χ θ
Assertion bitr2d φ θ ψ

Proof

Step Hyp Ref Expression
1 bitr2d.1 φ ψ χ
2 bitr2d.2 φ χ θ
3 1 2 bitrd φ ψ θ
4 3 bicomd φ θ ψ