Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
bitr2d
Next ⟩
bitr3d
Metamath Proof Explorer
Ascii
Unicode
Theorem
bitr2d
Description:
Deduction form of
bitr2i
.
(Contributed by
NM
, 9-Jun-2004)
Ref
Expression
Hypotheses
bitr2d.1
⊢
φ
→
ψ
↔
χ
bitr2d.2
⊢
φ
→
χ
↔
θ
Assertion
bitr2d
⊢
φ
→
θ
↔
ψ
Proof
Step
Hyp
Ref
Expression
1
bitr2d.1
⊢
φ
→
ψ
↔
χ
2
bitr2d.2
⊢
φ
→
χ
↔
θ
3
1
2
bitrd
⊢
φ
→
ψ
↔
θ
4
3
bicomd
⊢
φ
→
θ
↔
ψ