Metamath Proof Explorer


Theorem bitr2d

Description: Deduction form of bitr2i . (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses bitr2d.1 ( 𝜑 → ( 𝜓𝜒 ) )
bitr2d.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion bitr2d ( 𝜑 → ( 𝜃𝜓 ) )

Proof

Step Hyp Ref Expression
1 bitr2d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bitr2d.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 1 2 bitrd ( 𝜑 → ( 𝜓𝜃 ) )
4 3 bicomd ( 𝜑 → ( 𝜃𝜓 ) )