Metamath Proof Explorer


Theorem notbid

Description: Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994)

Ref Expression
Hypothesis notbid.1 φ ψ χ
Assertion notbid φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 notbid.1 φ ψ χ
2 notnotb ψ ¬ ¬ ψ
3 notnotb χ ¬ ¬ χ
4 1 2 3 3bitr3g φ ¬ ¬ ψ ¬ ¬ χ
5 4 con4bid φ ¬ ψ ¬ χ