Metamath Proof Explorer


Theorem sylibrd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibrd.1 φ ψ χ
sylibrd.2 φ θ χ
Assertion sylibrd φ ψ θ

Proof

Step Hyp Ref Expression
1 sylibrd.1 φ ψ χ
2 sylibrd.2 φ θ χ
3 2 biimprd φ χ θ
4 1 3 syld φ ψ θ