Metamath Proof Explorer


Theorem sylibrd

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylibrd.1
|- ( ph -> ( ps -> ch ) )
sylibrd.2
|- ( ph -> ( th <-> ch ) )
Assertion sylibrd
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 sylibrd.1
 |-  ( ph -> ( ps -> ch ) )
2 sylibrd.2
 |-  ( ph -> ( th <-> ch ) )
3 2 biimprd
 |-  ( ph -> ( ch -> th ) )
4 1 3 syld
 |-  ( ph -> ( ps -> th ) )