Metamath Proof Explorer


Theorem sylbird

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbird.1
|- ( ph -> ( ch <-> ps ) )
sylbird.2
|- ( ph -> ( ch -> th ) )
Assertion sylbird
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 sylbird.1
 |-  ( ph -> ( ch <-> ps ) )
2 sylbird.2
 |-  ( ph -> ( ch -> th ) )
3 1 biimprd
 |-  ( ph -> ( ps -> ch ) )
4 3 2 syld
 |-  ( ph -> ( ps -> th ) )