Metamath Proof Explorer


Theorem sylbird

Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)

Ref Expression
Hypotheses sylbird.1 ( 𝜑 → ( 𝜒𝜓 ) )
sylbird.2 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion sylbird ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 sylbird.1 ( 𝜑 → ( 𝜒𝜓 ) )
2 sylbird.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 1 biimprd ( 𝜑 → ( 𝜓𝜒 ) )
4 3 2 syld ( 𝜑 → ( 𝜓𝜃 ) )