Metamath Proof Explorer


Theorem simpl2r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl2r χ φ ψ θ τ ψ

Proof

Step Hyp Ref Expression
1 simplr φ ψ τ ψ
2 1 3ad2antl2 χ φ ψ θ τ ψ