Metamath Proof Explorer


Theorem ancom1s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an32s.1 φψχθ
Assertion ancom1s ψφχθ

Proof

Step Hyp Ref Expression
1 an32s.1 φψχθ
2 pm3.22 ψφφψ
3 2 1 sylan ψφχθ