Metamath Proof Explorer


Theorem 3bitrrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitrd.1 φψχ
3bitrd.2 φχθ
3bitrd.3 φθτ
Assertion 3bitrrd φτψ

Proof

Step Hyp Ref Expression
1 3bitrd.1 φψχ
2 3bitrd.2 φχθ
3 3bitrd.3 φθτ
4 1 2 bitr2d φθψ
5 3 4 bitr3d φτψ