Metamath Proof Explorer


Theorem 3bitr2d

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitr2d.1 φψχ
3bitr2d.2 φθχ
3bitr2d.3 φθτ
Assertion 3bitr2d φψτ

Proof

Step Hyp Ref Expression
1 3bitr2d.1 φψχ
2 3bitr2d.2 φθχ
3 3bitr2d.3 φθτ
4 1 2 bitr4d φψθ
5 4 3 bitrd φψτ