Metamath Proof Explorer


Theorem bitr4d

Description: Deduction form of bitr4i . (Contributed by NM, 30-Jun-1993)

Ref Expression
Hypotheses bitr4d.1 φψχ
bitr4d.2 φθχ
Assertion bitr4d φψθ

Proof

Step Hyp Ref Expression
1 bitr4d.1 φψχ
2 bitr4d.2 φθχ
3 2 bicomd φχθ
4 1 3 bitrd φψθ