Metamath Proof Explorer


Theorem bitr4d

Description: Deduction form of bitr4i . (Contributed by NM, 30-Jun-1993)

Ref Expression
Hypotheses bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
bitr4d.2 ( 𝜑 → ( 𝜃𝜒 ) )
Assertion bitr4d ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 bitr4d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bitr4d.2 ( 𝜑 → ( 𝜃𝜒 ) )
3 2 bicomd ( 𝜑 → ( 𝜒𝜃 ) )
4 1 3 bitrd ( 𝜑 → ( 𝜓𝜃 ) )