Metamath Proof Explorer


Theorem bitr4d

Description: Deduction form of bitr4i . (Contributed by NM, 30-Jun-1993)

Ref Expression
Hypotheses bitr4d.1
|- ( ph -> ( ps <-> ch ) )
bitr4d.2
|- ( ph -> ( th <-> ch ) )
Assertion bitr4d
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 bitr4d.1
 |-  ( ph -> ( ps <-> ch ) )
2 bitr4d.2
 |-  ( ph -> ( th <-> ch ) )
3 2 bicomd
 |-  ( ph -> ( ch <-> th ) )
4 1 3 bitrd
 |-  ( ph -> ( ps <-> th ) )