Metamath Proof Explorer


Theorem syldan

Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)

Ref Expression
Hypotheses syldan.1 φψχ
syldan.2 φχθ
Assertion syldan φψθ

Proof

Step Hyp Ref Expression
1 syldan.1 φψχ
2 syldan.2 φχθ
3 simpl φψφ
4 3 1 2 syl2anc φψθ