Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syldan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
syldan.2 | |- ( ( ph /\ ch ) -> th ) |
||
Assertion | syldan | |- ( ( ph /\ ps ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | syldan.2 | |- ( ( ph /\ ch ) -> th ) |
|
3 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
4 | 3 1 2 | syl2anc | |- ( ( ph /\ ps ) -> th ) |