Metamath Proof Explorer


Theorem syldan

Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)

Ref Expression
Hypotheses syldan.1
|- ( ( ph /\ ps ) -> ch )
syldan.2
|- ( ( ph /\ ch ) -> th )
Assertion syldan
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 syldan.1
 |-  ( ( ph /\ ps ) -> ch )
2 syldan.2
 |-  ( ( ph /\ ch ) -> th )
3 simpl
 |-  ( ( ph /\ ps ) -> ph )
4 3 1 2 syl2anc
 |-  ( ( ph /\ ps ) -> th )