Metamath Proof Explorer
Description: A double syllogism inference. For an implication-only version, see
syl2imc . (Contributed by NM, 17-Sep-2013)
|
|
Ref |
Expression |
|
Hypotheses |
syl2an.1 |
|
|
|
syl2an.2 |
|
|
|
syl2an.3 |
|
|
Assertion |
syl2anr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl2an.1 |
|
| 2 |
|
syl2an.2 |
|
| 3 |
|
syl2an.3 |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
ancoms |
|