Metamath Proof Explorer


Theorem syl2anr

Description: A double syllogism inference. For an implication-only version, see syl2imc . (Contributed by NM, 17-Sep-2013)

Ref Expression
Hypotheses syl2an.1 φψ
syl2an.2 τχ
syl2an.3 ψχθ
Assertion syl2anr τφθ

Proof

Step Hyp Ref Expression
1 syl2an.1 φψ
2 syl2an.2 τχ
3 syl2an.3 ψχθ
4 1 2 3 syl2an φτθ
5 4 ancoms τφθ