Metamath Proof Explorer


Theorem syl2anb

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anb.1 φψ
syl2anb.2 τχ
syl2anb.3 ψχθ
Assertion syl2anb φτθ

Proof

Step Hyp Ref Expression
1 syl2anb.1 φψ
2 syl2anb.2 τχ
3 syl2anb.3 ψχθ
4 1 3 sylanb φχθ
5 2 4 sylan2b φτθ