Metamath Proof Explorer


Theorem sylanb

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanb.1 φ ψ
sylanb.2 ψ χ θ
Assertion sylanb φ χ θ

Proof

Step Hyp Ref Expression
1 sylanb.1 φ ψ
2 sylanb.2 ψ χ θ
3 1 biimpi φ ψ
4 3 2 sylan φ χ θ