Metamath Proof Explorer


Theorem sylanb

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanb.1 φψ
sylanb.2 ψχθ
Assertion sylanb φχθ

Proof

Step Hyp Ref Expression
1 sylanb.1 φψ
2 sylanb.2 ψχθ
3 1 biimpi φψ
4 3 2 sylan φχθ