Metamath Proof Explorer


Theorem syl2anbr

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anbr.1 ψφ
syl2anbr.2 χτ
syl2anbr.3 ψχθ
Assertion syl2anbr φτθ

Proof

Step Hyp Ref Expression
1 syl2anbr.1 ψφ
2 syl2anbr.2 χτ
3 syl2anbr.3 ψχθ
4 1 3 sylanbr φχθ
5 2 4 sylan2br φτθ