Metamath Proof Explorer


Theorem sylancb

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancb.1 φψ
sylancb.2 φχ
sylancb.3 ψχθ
Assertion sylancb φθ

Proof

Step Hyp Ref Expression
1 sylancb.1 φψ
2 sylancb.2 φχ
3 sylancb.3 ψχθ
4 1 2 3 syl2anb φφθ
5 4 anidms φθ