Metamath Proof Explorer


Theorem sylan2br

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2br.1 χ φ
sylan2br.2 ψ χ θ
Assertion sylan2br ψ φ θ

Proof

Step Hyp Ref Expression
1 sylan2br.1 χ φ
2 sylan2br.2 ψ χ θ
3 1 biimpri φ χ
4 3 2 sylan2 ψ φ θ