Metamath Proof Explorer


Theorem sylan2br

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2br.1 ( 𝜒𝜑 )
sylan2br.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylan2br ( ( 𝜓𝜑 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylan2br.1 ( 𝜒𝜑 )
2 sylan2br.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 1 biimpri ( 𝜑𝜒 )
4 3 2 sylan2 ( ( 𝜓𝜑 ) → 𝜃 )